Document Type : Research Paper


Department of Mathematics\& Statistics, Faculty of Science P.O. Box(7), Mu'tah University, Alkarak, Jordan.


In this article, we delve into the concept of convexity within fuzzy metric spaces and delve into their structural characteristics. We present several theorems concerning the existence of coincidence points in fuzzy convex metric spaces. Furthermore, we introduce the notion of star-shaped subsets within fuzzy convex metric spaces. Within these star-shaped subsets, we showcase various fixed point theorems for mappings of the non-expansive type that commute. In the final section, we expand the definition of fuzzy convex metric spaces and provide a significant example of such a space. Additionally, we uncover specific fixed point theorems applicable to multi-valued mappings that are non-expansive.


Main Subjects

1. M.S. Brodskii and D.P. Milman, On the center of a convex set, Doki. Akad. Nauk. SSSR, 59 (1948), pp. 837–840.
2. M.S.Browder, Non-expansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA, 54(1965), pp. 1041–1044.
3. Z.K. Deng, Fuzzy psedo-metric spaces, J.Math. Anal. Appl., 86 (1982), pp. 74–94.
4. M. A. Erceg, Metric spaces in fuzzy set theory, J.Math. Anal. Appl., 69 (1979), pp. 338–353.
5. D.Gopala, M. Abbas and C.Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232(2014), pp. 955–967.
6. A. George and P. Veeramani, On some results in fuzzy metric spaces, J. Fuzzy Sets Syst., 64 (1994), pp. 395–399.
7. D. Göhde, Zum prinzip der Konttraktiven Abbildung, Math. Nachr., 30 (1965), 251–258.
8. M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set Syst., 27(1998), pp. 385–390.
9. O. Hadžić, Common fixed point theorems in probabilistic metric spaces with convex structure, Zb. rad. Prirod-Mat.Fak.ser. Mat., 18 (1987), pp. 165–178.
10. O. Hadžić, On a common fixed point in Banach and random normed spaces, Review of Research, Faculty of Science, Math. Series, Univ. of Novi Sad, 11(1981), pp. 11–18.
11. G.L. Cain and R.H. Kasriel, Fixed and periodic points of local contraction mappings on probabilistic metric spaces, Math. Systems Theory, 9 (1975), pp. 289–297.
12. S.N. Ješić, Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric space, Chaos, Solitions & Fractals, 41 (2008), pp. 292–301.
13. S.N. Ješić, R. M. Nikolic and A. Babačev, A common fixed point theorem in strictly convex Menger PM-spaces, Filomat, 28:4 (2016), pp. 735–743.
14. W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), pp. 1004–1006.
15. O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), pp. 215–229.
16. O. Kramosil and J.Michalek, Fuzzy metric and Statistical metric spaces, Kybernetika, 11 (1975), pp. 326–334.
17. S.N. Mishra, N. Mishra and S.L.Singh, Common fixed point of maps in fuzzy metric space, Int. J. Math. Math. Sci., 17 (1994), 253–258.
18. M. H. M. Rashid, A common fixed point theorem in strictly convex FMspaces, Commun. Optim. Theory 2017 (2017), Article ID 19.
19. Saleh Ahmad Almahadin, M.H.M. Rashid, Fixed point theorems for multivalued mappings in probabilistic metric spaces, J. Fixed Point Theory 2019 (2019), Article ID 11.
20. M.H.M. Rashid, Common fixed points for weakly compatible mappings in multiplicative cone metric spaces, J. Fixed Point Theory, 2018, 2018:6.
21. M. H. M. Rashid and S. A. Almahadin, Common Fixed Point Theorem For Occasionally Weakly Compatible Mappings In Probabilistic Metric Spaces, Electron. J. Math. Anal. Appl., 8 (2) (2020), pp. 261-271.
22. M.H.M. Rashid, Some Results on Fuzzy Metric Spaces, Int. J. Open Problems Compt. Math., 9 (4)(2016), pp. 1–23.
23. M.H.M. Rashid, Topological Degree Theory in Fuzzy Metric Spaces, Arch. Math. , 55 (2) (2019), pp. 83–96.
24. M.H.M. Rashid, Minimax theorems in fuzzy metric spaces, Comput. Appl. Math., 37 (2) (2018), pp. 1703–1720.
25. M.H.M. Rashid, Fixed point theorems for non-self mappings with nonlinear contractive condition in strictly convex FCM-spaces, J. Indones. Math. Soc., 26 (1)(2020), pp. 1–21.
26. A. Razani, A contraction theorem in fuzzy metric spaces, Fixed Point Theory Appl., 3 (2005), pp. 257–265.
27. A. Razani, Existence of fixed point for the nonexpansive mapping of intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 30 (2006), pp. 367–373.
28. R. Saadati, S. Sedghi and H. Zhou, A common fixed point theorem for weakly commuting maps in L-fuzzy metric spaces, Iran. J. Fuzzy Syst., 5 (1) (2008), pp. 47–53.
29. Y. Rohen, M.R. Singh and L. Shambhu, Common fixed points of compatible mapping of type (C) in Banach Spaces, Proc. Math. Soc., 20(2004), pp. 77–87.
30. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), pp. 313–334.
31. B. Schweizer and A. Sklar, Probabilistical Metric Spaces, Dover Publications, New York, 2005.
32. S.P. Singh and B.A Meade, On common fixed point theorems, Bull. Austral. Math. Soc., 16 (1977), pp. 49–53.
33. V.M. Sehgal and A.T. Bharucha-Reid, Fixed points of contraction mappings in PM-spaces, Math. syst. theory, 6 (1972), pp. 97–102.
34. N. Shobkolaei, S. M. Vaezpour and S. Sedghi, Fixed Points Theorems With Respect To Fuzzy W-Distance, Iran. J. Fuzzy Syst., 11 (2) (2014), pp. 103–112.
35. S. Shukla, D. Gopal and W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets Syst., 350(2018), pp. 85–94.
36. S. Shukla, D. Gopal and Antonio-Francisco Roldán-López-de-Hierro, Some fixed point theorems in 1-M-complete fuzzy metric-like spaces, Int. J. Gen. Syst., 45 (7-8)(2016), pp. 815–829.
37. W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep., 22(1970), pp. 142–149.
38. L.A. Zadeh, Fuzzy Sets, Inform Contr., 8 (1965), pp. 338–353.