1. S. Adly, Perturbed algorithm and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 201 (1996), pp. 609-630.

2. I. Ahmad, V.N. Mishra, R. Ahmad and M. Rahaman, An iterative algorithm for a system of generalized implicit variational inclusions, Springer Plus, 5 (1283) (2016), pp. 1-16.

3. I. Ahmad, R. Ahmad and J. Iqbal, A resolvent approach for solving a set-valued variational inclusion problem using weak-RRD setvalued mapping, Korean J. math., 24 (2) (2016), pp. 199-213.

4. I. Ahmad, R. Ahmad and J. Iqbal, Paprmetric ordered generalized variational inclsuions involving NODSM mappings, Adv. Nonlinear Var. Inequal., 19 (1) (2016), pp. 88-97.

5. R. Ahmad and Q.H. Ansari, An iteratlve algorithm for generalized nonlinear variational inclusions, Appl. Math. Lett., 13 (5) (2000), pp. 23-26.

6. Q.H. Ansari and J.C. Yao, A fixed point theorem and its applications to a system of variational inequalities, Bull. Austral. Math. Soc., 59 (3) (1999), pp. 433-442.

7. M. Bianchi, Pseudo P-monotone operators and variational inequalities, Report 6, Istitute di econometria e Matematica per le decisioni economiche, Universita Cattolica del Sacro Cuore, Milan, Italy, 1993.

8. G. Cohen and F. Chaplais, Nested monotonicity for variational inequlities over a product of spaces and conversgence of iterative algorithms, J. Optim. Theory Appl., 59 (1988), pp. 360-390.

9. X.P. Ding, Perturbed proximal point algorithms for generalized quasi-variational inclusions, J. Math. Anal. Appl., 210 (1997), pp. 88-101.

10. Y.H. Du, Fixed points of increasing operators in ordered Banach spaces and applications, Appl. Anal., 38 (1990), pp. 1-20.

11. A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185 (1994), pp. 706-712.

12. H.G. Li, X.B. Pan, Z.Y. Deng and C.Y. Wang, Solving GNOVI frameworks involving $(\gamma_{G} , \lambda)$-weak-GRD set-valued mappings in positive Hilbert spaces, Fixed Point Theory Appl., 146 (2014) (2014), pp. 1-9.

13. H.G. Li, A nonlinear inclusion problem involving $(\alpha , \lambda)$-NODM set-valued mappings in ordered Hilbert space, Appl. Math. Lett., 25 (2012), pp. 1384-1388.

14. H.G. Li, D. Qui and Y. Zou, Characterization of weak-ANODD setvalued mappings with applications to approximate solution of GNMOQV inclusions involving $\oplus$ operator in ordered Banach space, Fixed Point Theory Appl., 241 (2013) (2013), pp. 1-12.

15. H.G. Li, Nonlinear inclusion problems for ordered RME set-valued mappings in ordered Hilbert spaces, Nonlinear Funct. Anal. Appl., 16 (1) (2001), pp. 1-8.

16. H.G. Li, L.P. Li and M.M. Jin, A class of nonlinear mixed ordered inclusion problems for oredered (αA, λ)-ANODM set-valued mappings with strong comparison mapping A, Fixed Point Theory Appl., 79 (2014) (2014), pp. 1-9.

17. M.A. Noor, Generalized Set-Valued Variational Inclusions and Resolvent Equations, J. Math. Anal. Appl., 228 (1) (1998), pp. 206-220.

18. M.A. Noor, Three-Step Iterative Algorithms for Multivalued Quasi Variational Inclusions, J. Math. Anal. Appl., 255 (2) (2001), pp. 589-604.

19. M.A. Noor and K.I. Noor, Sensitivity Analysis for Quasi- Variational Inclusions, J. Math. Anal. Appl., 236 (2) (1999), pp. 290-299.

20. M.A. Noor, Algorithms for General Monotone Mixed Variational Inequalities, J. Math. Anal. Appl., 229 (1) (1999), pp. 330-343.

21. J.W. Peng, System of generalized set-valued quasi-variational-like inequalities, Bull. Austral. Math. Soc., 68 (2003), pp. 501-515.

22. M. Sarfaraz, M.K. Ahmad and A. Kiliçman, Approximation solution for system of generalized ordered variational inclusions with $\oplus$ operator in ordered Banach space, J. Inequal. Appl. 81 (2017) (2017), pp. 1-13.

23. H.H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin Heidelberg, 1974.

24. R.U. Verma, Aproximation solvability of a class of nonlinear setvalued inclusions involving (A, η)-monotone mappings, J. Math. Anal. Appl., 337 (2008), pp. 969–975.

25. R.U. Verma, A-monotonicity and applications to nonlinear variational inclusion problems, J. Appl. Math. Stoch. Anal., 17 (2) (2004), pp. 193-195.

26. R.U. Verma, A-monotone nonlinear relaxed cocoercive variational inclusions, Cent. Eur. J. Math., 5 (2) (2007), pp. 386-396.

27. Z. Wang and C. Wu, A system of nonlinear variational inclusions with (A, η)-monotone mappings, J. Inequal. Appl., (2008), pp. 1-6.

28. X.L. Weng, Fixed point iteration for local strictly pseudo-contractive mappings, Proc. Amer. Math. Soc., 3 (1991), pp. 727-731.

29. W.Y. Yan, Y.P. Fang and N.J. Huang, A new system of set-valued variational inclusions with H-monotone operators, Math. Inequl. Appl., 8 (3) (2005), pp. 537-546.