Document Type : Research Paper


1 Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.

2 Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, West Bengal, India.


We study the concept of frame in tensor product of  $n$-Hilbert spaces as tensor product of  $n$-Hilbert spaces is again an  $n$-Hilbert space. We generalize some of the known results about bases to frames in this new Hilbert space. A relationship between frame and bounded linear operator in tensor product of  $n$-Hilbert spaces is studied. Finally,\;the dual frame in tensor product of  $n$-Hilbert spaces is discussed.


[1] H. Bolcskei, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Process., 46 (1998), pp. 3256-3268.
[2] P.G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math., 345 (2004), pp. 87-114.
[3] O. Christensen, An introduction to frames and Riesz bases, ( Applied and Numerical Harmonic Analysis ), Birkhauser, 2008.
[4] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), pp. 1271-1283.
[5] C. Diminnie, S. Gahler and A. White, 2-inner product spaces, Demonstratio Mathematica, 6 (1973), pp. 525-536.
[6] N.E. Dudey Ward and J.R. Partington, A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modeling, SIAM J. Control Optim., 36 (1998), pp. 654-679.
[7] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.
[8] P.J.S.G. Ferreira, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, In: Byrnes, J. S. (ed.) Signal processing for multimedia, IOS Press, Amsterdam (1999), pp. 35-54.
[9] G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton (1995).
[10] D. Gabor, Theory of communications, J. Inst. Elec. Engrg., 93 (1946), pp. 429-457.
[11] P. Ghosh and T.K. Samanta, Stability of dual g-fusion frame in Hilbert spaces, Methods Funct. Anal. Topol., 26 (2020), pp. 227-240.
[12] P. Ghosh and T.K. Samanta, Construction of frame relative to $n$-Hilbert space, J. Linear. Topological. Algebra., 10 (2021), pp. 117-130.
[13] P. Ghosh and T.K. Samanta, Generalized atomic subspaces for operators in Hilbert spaces, Mathematica Bohemica, Accepted.
[14] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), pp. 631-639. 
[15] R. V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, vol. 15. American Mathematical Society, Providence (1997) (Elementary theory, Reprint of the 1983 original).
[16] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), pp. 299-319.
[17] S. Rabinson, Hilbert space and tensor products, Lecture notes September 8, 1997.
[18] G. Upender Reddy, N. Gopal Reddy and B. Krishna Reddy, Frame operator and Hilbert-Schmidt Operator in Tensor Product of Hilbert Spaces, J. Dyn. Syst. Geom. Theor., 7 (2009), pp. 61-70.
[19] V. Sadri, Gh. Rahimlou, R. Ahmadi and R. Zarghami Farfar, Generalized Fusion Frames in Hilbert Spaces, Inf. Dim. Anal. Quan. Prob. (IDA-QP), Vol. 23, No. 02, 2050015 (2020). 
[20] T. Strohmer and R. Jr. Heath, Grassmanian frames with applications to coding and communications, Appl. Comput. Harmon. Anal., 14 (2003), pp. 257-275. 
[21] W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl., 322 (2006), pp. 437-452.