[1] M.U. Awan, M.A. Noor, T.S. Du and K.I. Noor, New refinements of fractional Hermite-Hadamard inequality, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 113 (2019), pp. 21-29.

[2] H. Budak, M.Z. Sarikaya and M.K. Yildiz, Hermite-Hadamard type inequalities for ${F}$-convex function involving fractional integrals, Filomat, 32 (2018), pp. 5509-5518.

[3] H. Budak, On refinements of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators, Int. J. Optim. Control. Theor. Appl., 9 (2019), pp. 41-48.

[4] H. Budak, On Fejer type inequalities for convex mappings utilizing fractional integrals of a function with respect to another function, Results Math., 74 (2019), Art. 29.

[5] H. Budak, H. Kara, M.Z. Sarikaya and M.E. Kiris, New extensions of the Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, Miskolc Math. Notes, 21 (2020), pp. 665-678.

[6] H. Budak, F. Ertugral and M.Z. Sarikaya, New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), pp. 369-386.

[7] H. Budak, E. Pehlivan and P. Kosem, On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand Commun. Math. Anal., 18 (2021), pp. 73-88.

[8] F.X. Chen, Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals, J. Math. Inequal, 10 (2016), pp. 75-81.

[9] F.X. Chen, On the generalization of some Hermite-Hadamard Inequalities for functions with convex absolute values of the second derivatives via fractional integrals, Ukrainian Math. J., 12 (2019), pp. 1953-1965.

[10] F.X. Chen, Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), pp. 121-128.

[11] S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. Online: http://www.sta.vu.edu.au/RGMIA/monographs/hermite_hadamard.html.

[12] S.S. Dragomir, P. Cerone and A. Sofo, Some remarks on the midpoint rule in numerical integration, Stud. Univ. Babes-Bolyai Math., XLV (2000), pp. 63-74.

[13] S.S. Dragomir, P. Cerone and A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J. Pure Appl. Math., 31 (2000), pp. 475-494.

[14] A. Gozpinar, E. Set and S.S. Dragomir, Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute value are ${s}$-convex, Acta Math. Univ. Comenian., 88 (2019), pp. 87-100.

[15] S.R. Hwang and K.L. Tseng, New Hermite-Hadamard-type inequalities for fractional integrals and their applications, Rev. R. Acad. Cienc. Exactas Fi s. Nat. Ser. A Mat., 112 (2018), pp. 1211-1223.

[16] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat. 43 (2014), pp. 935-942.

[17] I. Iscan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comp., 238 (2014), pp. 237-244.

[18] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.

[19] K. Liu, J. Wang and D. O'Regan, On the Hermite-Hadamard type inequality for $psi $-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2017), Art. 27.

[20] A.R. Khan, H. Nasir, and S.S. Shirazi, Weighted Cebysev type inequalities for double integrals and application, Sahand Commun. Math. Anal., 18 (2021), pp. 59-72.

[21] P.O. Mohammed and M.Z. Sarikaya, Hermite-Hadamard type inequalities for $F$-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), Art. 359.

[22] S. Mubeen and G.M. Habibullah, $k$-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7 (2012), pp.89-94.

[23]N. Minculete and F-C. Mitroi, Fejer-type inequalities, Aust. J. Math. Anal. Appl., 9 (2012), Art. 12.

[24] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, 1992.

[25] S. Qaisar, M. Iqbal, S. Hussain, S. Butt, and M.A. Meraj, New inequalities on Hermite-Hadamard utilizing fractional integrals, Kragujevac J. Math., 42 (2018), pp. 15-27.

[26] K. Qiu and J.R. Wang, A fractional integral identity and its application to fractional Hermite-Hadamard type inequalities, J. Interdiscip. Math., 21 (2018), pp. 1-16.

[27] M.Z. Sarikaya and N. Aktan, On the generalization some integral inequalities and their applications, Math. Comput. Modelling, 54 (2011), pp. 2175-2182.

[28] M.Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Mathematical Notes, 17 (2016), pp.1049-1059.

[29] M.Z. Sarikaya and F. Ertugral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), pp. 193-213..

[30] M.Z. Sarikaya, On Fejer type inequalities via fractional integrals, J. Interdiscip. Math., 21 (2018), pp. 143-155.

[31] M.Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite -Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57 (2013), pp. 2403-2407.

[32] E. Set, A. Akdemir and B. Celik, On generalization of Fejer type inequalities via fractional integral operator, Filomat, 32 (2018), pp. 5537-5547.

[33] T. Tunc, S. Sonmezoglu and M.Z. Sarikaya, On integral inequalities of Hermite-Hadamard type via Green function and applications, Appl. Appl. Math., 14 (2019), pp. 452-462.

[34] D. Zhao, M.A. Ali, A. Kashuri and H. Budak, Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions, Adv. Difference Equ., 2020 (2020), pp. 1-14.