[1] A. Aldroubi, Q. Sun and W. Tang, $p$-frames and shift invariant subspaces of $L_p $, J. Fourier Anal. Appl., 7(2001), pp. 1-21.

[2] M.R. Abdollahpour, M.H. Faroughi and A. Rahimi, $PG$-frames in Banach spaces, Methods Funct. Anal. Topology, 13 (3) (2007), pp. 201-210.

[3] N.K. Bari, Biorthogonal systems and bases in Hilbert space, Mosc. Gos. Univ. Uc. Zap. 148, Matematika 4 (1951), pp. 69-107. (in Russian)

[4] B.T. Bilalov and F.A. Guliyeva, On The Frame Properties of Degenerate System of Sines, J. Funct. Spaces Appl., 2012 (2012), 12 pages.

[5] B.T. Bilalov and F.A. Guliyeva, Neotherian perturbation of frames, Pensee Int. J., 75:12 (2013), pp. 425-431.

[6] B.T. Bilalov and Sh.M. Hashimov, On Decomposition In Banach Spaces, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 40 (2) (2014), pp. 97-106.

[7] B.T. Bilalov and F.A. Guliyeva, t-Frames and their Noetherian Perturbation, Complex Anal. Oper. Theory, 8 (7) (2014), pp. 1405-1418.

[8] B.T. Bilalov and Z.G. Guseinov, K -Bessel and K -Hilbert systems and K-bases, Dokl. Math., 80 (3) (2009), pp. 826-828.

[9] B.T. Bilalov, M.I. Ismailov and Z.V. Mamedova, Uncountable Frames in Non-Separable Hilbert Spaces and their Characterization, Azerb. J. Math., 8 (1) (2018), pp. 151-178.

[10] Z.A. Canturija, On some properties of biorthogonal systems in Banach space and their applications in spectral theory, Soobshch. Akad. Nauk Gruz. SSR, 2:34 (1964), pp. 271-276.

[11] P.G. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Math. Anal. Appl., 307 (2) (2005), pp. 710-723.

[12] P.G. Casazza and O. Christensen, Approximation of the inverse frame operator and applications to Gabor frames, J. Approx. Theory 103(2)(2000), pp. 338-356.

[13] P.G. Casazza, O. Christensen and D.T. Stoeva, Frame expansions in separable Banach spaces, J. Math. Anal. Appl., 307 (2) (2005), pp. 710-723.

[14] P.G. Casazza, D. Han and D.R. Larson, Frames for Banach space, Contemp. Math., 247 (1999), pp. 149-182.

[15] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser Boston, 2002.

[16] O. Christensen and C. Heil, Perturbations of Frames and Atomic Decompositions, Math. Nachr., 185 (1997), pp. 33-47.

[17] O. Christensen and D.T. Stoeva, $p$-frames in separable Banach spaces, Adv. Comput. Math., 18 (2003), pp. 117-126.

[18] I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.

[19] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.

[20] H.G. Feichtinger and K.H. Grochening, Banach spaces related to integrable group representations and their atomic decompositions, J. Func. Anal., 86 (2) (1989), pp. 307-340

[21] K. Gr"ochenig, Describing functions: atomic decomposition versus frames, Monatsh. Math., 112 (1) (1991), pp. 1-41.

[22] Ch. Heil, A Basis Theory Primer, Springer, 2011.

[23] D. Han and D.R. Larson, Frames, bases and group representations, Memoirs Amer. Math. Soc., 147:697(2000), pp. 1-91.

[24] M.I. Ismailov and A. Jabrailova, On $tilde{X}$-frames and conjugate systems in Banach spaces, Sahand Commun. Math. Anal., 1 (2) (2014), pp. 19-26.

[25] M.I. Ismailov, Y.I. Nasibov, On One Generalization of Banach frame, Azerb. J. Math., 6 (2) (2016), pp. 143-159.

[26] M.I. Ismailov, F. Guliyeva and Y. Nasibov, On a generalization of the Hilbert frame generated by the bilinear mapping, J. Funct. Anal., (2016), pp.1-8.

[27] M.I. Ismailov, On Bessel and Riesz-Fisher systems with respect to Banach space of vector-valued sequences, Bull. Transilv. Univ. of Brasov, Ser. III, 12:61 (2) (2019), pp. 303-318.

[28] M.I. Ismailov, On uncountable $K$-Bessel and $K$-Hilbert systems in nonseparable Banach space, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 45 (2) (2019), pp. 192-204.

[29] P.K. Jain, S.K. Kaushik, and L.K. Vashisht, On stability of Banach frames, Bull. Korean Math. Soc., 44 (1) (2007), pp.73-81.

[30] Y. Meyer, Wavelets and operators, Herman, Paris, 1990.

[31] A. Pelczunski and I. Singer, On non-equivalent bases and conditional bases in Banach spaces, Studia Math., 25 (1964), pp.5-25.

[32] A. Rahimi, Frames and Their Generalizations in Hilbert and Banach Spaces, Lap Lambert Academic Publ., 2011.

[33] W. Sun, Stability of g-frames, J. Math. Anal.Appl., 326 (2) (2007), pp. 858-868.

[34] W. Sun, G-frames and g-Riesz bases, J. Math. Anal.Appl., 322 (1)(2006), pp. 437-452.

[35] P.A. Terekhin, On Besselian systems in a Banach space, Mat. Zametki, 91:2 (2012), pp. 285-296. (in Russian)

[36] Veits B.E. Bessel and Hilbert systems in Banach spaces and stability problems, Izv. Vyssh. Uchebn. Zaved. Mat., 2:45 (1965), pp. 7-23. (in Russian)

[37] R. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.