[1] H. Ahmad, M. Tariq, S.K. Sahoo, S. Askar, A.E. Abouelregal and K.M. Khedher, Refinements of Ostrowski-type integral inequalities involving Atangana--Baleanu fractional integral operator, Symmetry., 13, (2021), article: 2059.
[2] M. Alomari, M. Darus, S.S. Dragomir and P. Cerone, Ostrowski-type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23, (2010), pp. 1071-1076.
[3] A. Arshad and A.R. Khan, Hermite$-$Hadamard$-$Fejer type integral inequality for $s-p-$convex of several kinds, Transylv. J. Math. Mech., 11 (2019), pp. 25-40.
[4] E.F. Beckenbach, Convex, Bull. Amer. Math. Soc., 54 (1948), pp. 439-460.
[5] B. Benaissa, and A. Senouci, New integral inequalities relating to a general integral operators through monotone functions, Sahand Commun. Math. Anal., 19(1), (2022), pp. 41-56.
[6] W.W. Breckner, Stetigkeitsaussagen Fur eine klasse verallgemeinerter konvexer funktionen in topologischen linearen raumen., Publ. Inst. Math. Univ. German., 23 (1978), pp. 13-20.
[7] E. Set, New inequalities of Ostrowski-type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), pp. 1147-1154.
[8] M.J.V. Cortez and J.E. Hernández, Ostrowski and Jensen-type inequalities via $ (s, m) $-convex in the second sense, Bol. Soc. Mat. Mex., 26 (2020), pp. 287-302.
[9] B. Daraby, A. Khodadadi, and A. Rahim, Godunova type inequality for Sugeno integral, Sahand Commun. Math. Anal., 19(4), (2022), pp. 39-50.
[10] B. Daraby, Generalizations of some inequalities for Sugino integrals, Sahand Commun. Math. Anal., 19(3), (2022), pp. 141-168.
[11] S.S. Dragomir, A companion of Ostrowski's inequality for functions of bounded variation and applications, Int. J. Nonlinear Anal. Appl., 5 (2014), pp. 89-97.
[12] S.S. Dragomir, The functional generalization of Ostrowski inequality via montgomery identity, Acta Math. Univ. Comenianae., 1 (2015), pp. 63-78.
[13] S.S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl., 4 (2001), pp. 59-66.
[14] S.S. Dragomir, Integral inequalities of Jensen type for $\lambda$-convex, Res. Rep., Kitakyushu Coll. Technol., 17 (2014).
[15] S.S. Dragomir, Refinements of the generalised trapozoid and Ostrowski inequalities for functions of bounded variation, Arch. Math., 91 (2008), pp. 450-460.
[16] S.S. Dragomir and N. S. Barnett, An Ostrowski-type inequality for mappings whose second derivatives are bounded and applications, J. Indian Math. Soc., 66 (1999), pp. 237-245.
[17] S.S. Dragomir, P. Cerone, N.S. Barnett and J. Roumeliotis, An inequality of the Ostrowski-type for double integrals and applications for cubature formulae, Tamsui Oxf. J. Inf. Math. Sci., 16 (2000), pp. 1-16.
[18] S.S. Dragomir, P. Cerone and J. Roumeliotis, A new generalization of Ostrowski integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 13 (2000), pp. 19-25.
[19] S.S. Dragomir, J. Pecaric and L. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), pp. 335-341.
[20] A. Ekinci, Klasik esitsizlikler yoluyla konveks fonksiyonlar icin integral esitsizlikler, Ph.D. Thesis: Atat\"urk University, 2014.
[21] E.K. Godunova and V.I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numerical Mathematics and Mathematical Physics, 1985.
[22] N. Irshad, A.R. Khan and A. Nazir, Extension of Ostrowki type inequality via moment generating gunction, Adv. Ineq. Appl, 2 (2020), pp. 1-15.
[23] N. Irshad, A.R. Khan and M.A. Shaikh, Generalization of weighted Ostrowski inequality with applications in numerical integration, Adv. Ineq. Appl., 7 (2019), pp. 1-14.
[24] N. Irshad, A.R. Khan and M.A. Shaikh, Generalized weighted Ostrowski-Gruss type inequality with applications, Glob. J. Pure Appl. Math., 15 (2019), pp. 675-692.
[25] N. Irshad and A.R. Khan, On weighted Ostrowski Gruss inequality with applications, Transylv. J. Math. Mech., 10 (2018), pp. 15-22.
[26] N. Irshad and A.R. Khan, Generalization of Ostrowski inequality for differentiable functions and its applications to numerical quadrature rules, J. Math. Anal. Appl., 8 (2017), pp. 79-102.
[27] A. Kashuri, B. Meftah, P.O. Mohammed, A.A. Lupaş, B. Abdalla, Y.S. Hamed and T. Abdeljawad, Fractional weighted Ostrowski-type inequalities and their applications, Symmetry., 13, (2021), art: 968.
[28] M. Matłoka, On Ostrowski-type inequalities via fractional integrals with respect to another function, Int. J. Appl. Nonlinear Sci., 13 (2020), pp. 100-106
[29] L. Nasiri, and M. Shams, The generalized inequalities via means and positive linear appings, Sahand Commun. Math. Anal., 19(2), (2022), pp. 133-148. doi: 10.22130/scma.2022.544128.1028.
[30] M.A. Noor and M.U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Transylv. J. Math. Mech., 5 (2013), pp. 129-136.
[31] A. M. Ostrowski, Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10 (1938), pp. 226-227.
[32] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives, Theory and Applications Gordon and Breach New York, 1993.
[33] S.K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi and A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential type convex functions and applications, Symmetry., 13 (2021), art: 1429.
[34] S.K. Sahoo, P.O. Mohammed, B. Kodamasingh, M. Tariq and Y.S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo--Fabrizio operator, Frac Fract., 6 (2022), article: 171.
[35] E. Set, New inequalities of Ostrowski-type for mappings whose derivatives are $s-$convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), pp. 1147-1154.
[36] H.M. Srivastava, S.K. Sahoo, P.O. Mohammed, B. Kodamasingh and Y.S. Hamed, New Riemann--Liouville fractional order inclusions for convex functions via interval valued settings associated with pseudo order relations, Frac Fract., 6 (2022), art: 212.
[37] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), pp. 303-311.
[38] X. Yang, A note on Holder inequality, Appl. Math. Comput., 134 (2003), pp. 319-322.