[1] Z. Bartosiewicz, N. Martins and D.F.M. Torres, The second Euler-Lagrange equation of variational calculus on time scales, Eur. J. Control, 17(1) (2011), pp. 9-18.
[2] M. Bohner and A. Peterson, Dynamic equations on time scales, Boston, MA: Birkhauser Boston Inc., 2001.
[3] M. Bohner, Calculus of variations on time scales, Dyn. Syst. Appl., 13(3-4) (2004), pp. 339-349.
[4] M. Bohner and T. Matthewa, The Gruss inequality on time scales, Commun. Math. Anal., 3(1) (2007), pp. 1-8.
[5] M. Bohner and T. Matthewa, Ostrowski inequalities on time scales, J. Inequal. Pure Appl. Math., 9(1) (2008), Art. 6, pp. 8.
[6] M. Bohner and S.G. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer International Publishing Switzerland, 2016.
[7] X.L. Cheng, Improvement of some Ostrowski-Gruss type inequalities, Computers Math. Applic., 42 (2001), pp. 109-114.
[8] S.S. Dragomir and S. Wang, An inequality of Ostrowski-Gruss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33 (1997), pp. 15-20.
[9] S.S. Dragomir, The discrete version of Ostrowski's inequality in normed linear spaces, J. Inequal. Pure Appl. Math., 3(1) (2002).
[10] R.A.C. Ferreira, A.B. Malinowska and D.F.M. Torres, Optimality conditions for the calculus of variations with higher-order delta derivatives, Appl. Math. Lett., 24(1) (2011), pp. 87-92.
[11] S. Hilger, Ein MaBkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universitat Wurzburg (1988).
[12] R. Hilscher and V. Zeidan, Calculus of variations on time scales: weak local piecewise $C^1_rd$ solutions with variable endpoints, J. Math. Anal. Appl., 289(1) (2004), pp. 143-166.
[13] R. Hilscher and V. Zeidan, Weak maximum principle and accessory problem for control problems on time scales, Nonlinear Anal., 70(9) (2009), pp. 3209-3226.
[14] W.J. Liu, C.C. Li and Y.M. Hao, Further generalization of some double integral inequalities and applications, Acta. Math. Univ. Comenianae, 77(1) (2008), pp. 147-154.
[15] W. Liu and Q.A. Ng\^o, An Ostrowski-Gruss type inequality on time scales, Comput. Math. Appl., 58(2009), pp. 1207-1210.
[16] W.J. Liu, Q.L. Xue and S.F. Wang, Several new perturbed Ostrowski-like type inequalities, J. Inequal. Pure Appl. Math., 8(4) (2007), Art.110, pp. 6.
[17] A.B. Malinowska, N. Martins and D.F. M. Torres, Transversality conditions for infinite horizon variational problems on time scales, Optim. Lett., 5(1) (2011), pp. 41-53.
[18] A.B. Malinowska and D.F.M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), pp. 1712-1722.
[19] F. Mehmood, A.R. Khan and M.A. Shaikh, Generalization of Gruss inequality on Time Scales, Submitted.
[20] F. Mehmood, A.R. Khan and M.A. Shaikh, Generalization of Ostrowski inequalities on Time Scales, Vladikavkaz Mathematical Journal, to appear.
[21] D.S. Mitrinovic, J.E. Pecaric and A.M. Fink, Inequalities involving functions and their integrals and derivatives, vol. 53 of Mathematics and its Applications (East European Series). Dordrecht: Kluwer Academic Publisher Group, p. 565, 1991.
[22] D.S. Mitrinovic, J. Pecaric and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
[23] D.S. Mitrinovic, J. Pecaric and A.M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic, Dordrecht, 1994.
[24] M. Matic, J. Pecaric and N. Ujevic, Improvement and further generalization of inequalities of Ostrowski-Gruss type, Computers Math. Applic., 39(3/4) (2000), pp. 161-175.