[1] R. Agarwal, M.P. Goswami and R.P. Agarwal, Hankel transform in bicomplex space and applications, TJMM, 8 (1) (2016), pp. 1-14.

[2] M. Bahri, R. Ashino and R. Vaillancourt, Continuous quaternion Fourier and wavelet transform, Int. J. Wavelets Multiresolution Inf. Process., 12 (4) (2014), 1460003.

[3] B. Davies, Integral transforms and their Applications, Springer, 1978.

[4] L. S. Dube and J. N. Pandey, On the Hankel transform of distributions, Tohoku Math. J., 27 (3) (1975), pp. 337-354.

[5] A. Elkachkouri, A. Ghanmi and A. Hafoud, Bargmann's versus of the quaternionic fractional Hankel transform, arXiv preprint arXiv:2003.05552, 2020.

[6] I. M. Gelfand and G.E. Shilov, Generalized Functions, Academic Press, New York, 1967.

[7] A. Ghaani Farashahi and G.S. Chirikjian, Fourier-Bessel series of compactly supported convolutions on disks, Anal. Appl., 20 (2) (2022), pp. 171-192.

[8] E. Hitzer, Quaternion Fourier Transform on Quaternion Fields and Generalizations, Adv. Appl. Clifford Algebr., 17 (3) (2007), pp. 497-517.

[9] F.H. Kerr, Fractional powers of Hankel transforms in the Zemanian spaces, J. Math. Anal. Appl., 166(1) (1992), pp. 65-83.

[10] E.L. Koh and C.K. Li, On the inverse of the Hankel transform, Integral Transform Spec. Funct., 2(4) (1994), pp. 279-282.

[11] E.L. Koh and A.H. Zemanian, The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math., 16 (5) (1968), pp. 945-957.

[12] A.C. Lewis, Chapter 35 - William Rown Hamilton, Lectures on quaternions (1853), Landmark Writings in Western Mathematics, Elsevier Science, 2005.

[13] S.P. Malgonde and L. Debnath, On Hankel type integral transform of generalized functions, Integral Transform Spec. Funct., 15 (5) (2004), pp. 421-430.

[14] S.P. Malgonde and V.R. Lakshmi Gorty, Orthogonal series expansions of generalized functions and the finite generalized Hankel-Clifford transformation of distributions, Rev. Acad. Canar. Cienc., XX (1-2) (2008), pp. 49-61.

[15] J.M. Mendez, The finite Hankel-Schwartz transform, J. Korean Math. Soc., 26 (1) (1989), pp. 43-55.

[16] J.M. Mendez, On the Bessel transformation of arbitrary order, Math. Nachr., 136 (1) (1988), pp. 233-239.

[17] V. Namias, Fractionalization of Hankel transforms, IMA J. Appl. Math., 26 (2) (1980), pp. 187-197.

[18] K. Parmar and V.R. Lakshmi Gorty, One-Dimensional Quaternion Mellin Transform and its applications, Proc. Jangjeon Math. Soc., 24 (1) (2021), pp. 99-112.

[19] K. Parmar and V.R. Lakshmi Gorty, Application and graphical interpretation of a new two-dimensional quaternion fractional Fourier transform, Int. J. Anal. Appl., 19 (4) (2021), pp. 561-575.

[20] K. Parmar and V.R. Lakshmi Gorty, Quaternion Stieltjes Transform and Quaternion Laplace-Stieltjes Transform, Commun. Math. Appl., 12 (3) (2021), pp. 633-643.

[21] K. Parmar and V.R. Lakshmi Gorty, Numerical Computation of Finite Quaternion Mellin Transform Using a New Algorithm, International Conference on Advances in Computing and Data Sciences, (2021), pp. 172-182.

[22] E.D. Rainville, Special functions, The Macmillan Company, New York, 1960.

[23] R. Roopkumar, Quaternionic one-dimensional fractional Fourier transform, Optik, 127 (24) (2016), pp. 11657-11661.

[24] I.N. Sneddon, III. Finite Hankel transform, Philos. Mag., 37 (264) (1946), pp. 17-25.

[25] A. Torre, Hankel-type integral transforms and their fractionalization: a note, Integral Transform Spec. Funct., 19 (4) (2008), pp. 277-292.

[26] A.H. Zemanian, Generalized Integral Transformation, John Wiley Sons Inc., New York, 1969.