[1] H. Ahmad, M. Tariq, S.K. Sahoo, S. Askar, A.E. Abouelregal and K.M. Khedher, Refinements of Ostrowski-type integral inequalities involving Atangana-Baleanu fractional integral operator, Symmetry., 13, (2021), article: 2059.

[2] M. Alomari, M. Darus, S.S. Dragomir and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23, (2010), pp. 1071-1076.

[3] A. Arshad and A.R. Khan, Hermite$-$Hadamard$-$Fejer Type Integral Inequality for $s-p-$convex of Several Kinds, TJMM, 11 (2019), pp. 25-40.

[4] E.F. Beckenbach, convex, Bull. Amer. Math. Soc., 54, (1948), pp. 439-460.

[5] B. Benaissa and A. Senouci, New integral inequalities relating to a general integral operators through monotone functions, Sahand Commun. Math. Anal., 19(1), (2022), pp. 41-56.

[6] W.W. Breckner, Stetigkeitsaussagen Fur Eine Klasse Verallgemeinerter Konvexer Funktionen in Topologischen Linearen Raumen. (German), Publ. Inst. Math., 23 (1978), pp. 13-20.

[7] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), pp. 1147-1154.

[8] M.J.V. Cortez and J. E. Hernández, Ostrowski and Jensen-type inequalities via (s, m)-convex in the second sense, Bol. Soc. Mat. Mex., 26, (2020), pp. 287-302.

[9] B. Daraby, A. Khodadadi and A. Rahim, Godunova type inequality for Sugeno integral, Sahand Commun. Math. Anal., 19(4), (2022), pp. 39-50.

[10] B. Daraby, Generalizations of some inequalities for Sugino integrals, Sahand Commun. Math. Anal., 19(3), (2022), pp. 141-168.

[11] S.S. Dragomir, A Companion of Ostrowski's Inequality for Functions of Bounded Variation and Applications, Int. J. Nonlinear Anal. Appl., 5 (2014), pp. 89-97.

[12] S.S. Dragomir, The Functional Generalization of Ostrowski Inequality via Montgomery identity, Acta Math. Univ. Comenianae, LXXXIV., 1, (2015), pp. 63-78.

[13] S.S. Dragomir, On the Ostrowski's Integral Inequality for Mappings with Bounded Variation and Applications, Math. Inequal. Appl., 4 (2001), pp. 59-66.

[14] S.S. Dragomir, Integral inequalities of Jensen type for $\lambda$-convex, In Proceedings of RGMIA, Res. Rep. Coll., 17 (2014).

[15] S.S. Dragomir, Inequalities of Jensen Type for $\phi-$convex, Fascic. Mathema, 5 (2015), pp. 35-52.

[16] S.S. Dragomir, Refinements of the Generalised Trapozoid and Ostrowski Inequalities for Functions of Bounded Variation, Arch. Math., 91 (2008), pp. 450-460.

[17] S.S. Dragomir and N.S. Barnett, An Ostrowski Type Inequality for Mappings whose Second Derivatives are Bounded and Applications, J. Indian Math. Soc. (N.S.), 66 (1999), pp. 237-245.

[18] S.S. Dragomir, P. Cerone, N.S. Barnett and J. Roumeliotis, An Inequality of the Ostrowski Type for Double Integrals and Applications for Cubature Formulae, Tamsui. Oxf. J. Math. Sci., 16 (2000), pp. 1-16.

[19] S.S. Dragomir, P. Cerone and J. Roumeliotis, A new Generalization of Ostrowski Integral Inequality for Mappings whose Derivatives are Bounded and Applications in Numerical Integration and for Special Means, Appl. Math. Lett., 13 (2000), pp. 19-25.

[20] S.S. Dragomir, J. Pecaric and L. Persson, Some inequalities of Hadamard type, Soochow. J. Math., 21 (1995), pp. 335-341.

[21] A. Ekinci, Klasik Esitsizlikler Yoluyla Konveks Fonksiyonlar icin Integral Esitsizlikler, Ph.D. Thesis, Thesis ID: 361162 in tez2.yok.gov.tr Ataturk University, 2014.

[22] E.K. Godunova and V.I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numerical Mathematics and Mathematical Physics, (Russian), 166, (1985), 138-142.

[23] N. Irshad, A.R. Khan and A. Nazir, Extension of Ostrowki Type Inequality via Moment Generating Function, Adv. Inequal. Appl., 2, (2020), pp. 1-15.

[24] N. Irshad, A.R. Khan and M.A. Shaikh, Generalization of Weighted Ostrowski Inequality with Applications in Numerical Integration, Adv. Ineq. Appl., 7 (2019), pp. 1-14.

[25] N. Irshad, A.R. Khan and M.A. Shaikh, Generalized Weighted Ostrowski-Gruss Type Inequality with Applications, Global. J. Pure Appl. Math., 15 (2019), pp. 675-692.

[26] N. Irshad and A.R. Khan, On Weighted Ostrowski Gruss Inequality with Applications, TJMM, 10 (2018), pp. 15-22.

[27] N. Irshad and A.R. Khan, Generalization of Ostrowski Inequality for Differentiable functions and its applications to numerical quadrature rules, J. Math. Anal, 8 (2017), pp. 79-102.

[28] A. Kashuri, B. Meftah, P.O. Mohammed, A.A. Lupaş, B. Abdalla, Y.S. Hamed and T. Abdeljawad, Fractional weighted Ostrowski-type inequalities and their applications, Symmetry., 13, (2021), art: 968.

[29] M. Matłoka, On Ostrowski type inequalities via fractional integrals with respect to another function, J. Nonlinear Sci. Appl., 13 (2020), pp. 100-106

[30] L. Nasiri and M. Shams, The generalized inequalities via means and positive linear appings, Sahand Commun. Math. Anal., 19(2), (2022), pp. 133-148.

[31] M.A. Noor and M.U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, TJMM, 5 (2013), pp. 129-136.

[32] A.M. Ostrowski, Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10 (1938), pp. 226-227.

[33] S.K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi and A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential type convex functions and applications, Symmetry., 13 (2021), art: 1429.

[34] S.K. Sahoo, P.O. Mohammed, B. Kodamasingh, M. Tariq and Y.S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Frac Fract., 6 (2022), article: 171.

[35] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications Gordon and Breach New York, 1, (1993).

[36] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are $s-$convex in the second sense via fractional integrals, Comput. Math. Appl, 63 (2012), pp. 1147-1154.

[37] H.M. Srivastava, S.K. Sahoo, P.O. Mohammed, B. Kodamasingh and Y.S. Hamed, New Riemann-Liouville fractional order inclusions for convex functions via interval valued settings associated with pseudo order relations, Frac Fract., 6 (2022), art: 212.

[38] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), pp. 303-311.

[39] Z.G. Xiao and A.H. Zhang, Mixed power mean inequalities, Res. Comm. Ineq., 8 (2002), pp. 15-17.

[40] X. Yang, A note on Hölder inequality, Appl. Math. Comput., 134, (2003), pp. 319-322.