[1] A.A. Kilbas, H.M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
[2] A. Chouhan and A.M. Khan, Unified integrals associated with $H$-functions and $M$-series, J. Fract. Calc. Appl., 6 (2) (2015), pp. 11-17.
[3] A. Chouhan and S. Saraswat, Certain properties of fractional calculus operators associated with $M$-series, Scientia, Series A: Mathematical Sciences, 22 (2012), pp. 27-32.
[4] D. Kumar, J. Ram and J. Choi, Certain generalized integral formulas involving Chebyshev Hermite polynomials, generalized $M$-series and Aleph-function and their application in heat conduction, Int. J. Math. Anal., 9 (37) (2015), pp. 1795-1803.
[5] D. Kumar and R.K. Saxena, Generalized fractional calculus of the $M$-series involving $F_3$ hypergeometric function, Sohag J. Math., 2 (1) (2015), pp. 17-22.
[6] D.K. Singh, Fractional calculus operators involving generalized $M$-series, J. Fract. Calc. Appl., 5 (2) (2014), pp. 78-83.
[7] D.S. Sachan and S. Jaloree, Integral transforms of generalized $M$-Series, J. Fract. Calc. Appl., 12 (1) (2021), pp. 213-222.
[8] D.S. Sachan, H. Jalori and S. Jaloree, Fractional calculus of product of $M$-series and $I$-function of two variables, J\~n\=an\=abha, 52 (1) (2022), pp. 189-202.
[9] D.S. Sachan, S. Jaloree and J. Choi, Certain recurrence relations of two parametric Mittag-Leffler function and their application in fractional calculus, Fractal Fract., 5 (2021), Article ID 215.
[10] D.L. Suthar, F. Gidaf and M. Andualem, Certain properties of generalized $M$-series under generalized fractional integral operators, J. Math., 2021, Article ID 5527819, 10 pages.
[11] D.L. Suthar, H. Tadesse and K. Tilahun, Integrals involving Jacobi polynomials and $M$-Series, J. Fract. Calc. Appl., 9 (2) (2018), pp. 287-294.
[12] E.D. Rainville, Special Functions. Chelsea Publishing Company, Bronx, New York, 1960.
[13] E. Ilhan and I.O. Kiymaz, A generalization of truncated $M$-fractional derivatives and applications to fractional differential equation, Appl. Math. Nonlinear Sci., 5 (1) (2020), pp. 171-188.
[14] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 2004.
[15] G.M. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha(z)}$, C.R. Acad. Sci. Paris, 137 (1903), pp. 554-558.
[16] H.M. Srivastava and J. Choi, Zeta and $q$-Zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
[17] K.S. Gehlot, Integral representation and certain properties of $M$-series associated with fractional calculus,Internat. Math. Forum, 8 (9) (2013), pp. 415-426.
[18] M. Sharma and R. Jain, A note on a generalized $M$-series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12 (2009), pp. 449-452.
[19] R.K. Saxena, A remark on a paper on $M$-series, Fract. Calc. Appl. Anal., 12 (1) (2009), pp. 109-110.
[20] S. Najafzadeh, Certain subclass of univalent functions associated with $M$-series based on $q$-derivative, TWMS J. App. and Eng. Math., 11 (4) (2021), pp. 1281-1287.
[21] S. Najafzadeh, Univalent functions related to $q$-analogue of generalized $M$-Series with respect to $k$-symmetric points, Surv. Math. Appl., 14 (2019), pp. 277-285.
[22] T. Pohlen, The Hadamard product and universal power series, Ph.D. Thesis, Universitat Trier, Trier, Germany, 2009.
[23] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yakohama Math. J., 19 (1971), pp. 7-15.
[24] V. Kiryakova, On two Saigo's fractional integral operator in the class of univalent functions, Fract. Calc. Appl. Anal., 9 (2006), pp. 159-176.