Document Type : Research Paper


1 Department of Mathematics, University of Karachi, University Road, Karachi-75270 Pakistan.

2 Department of Basic Sciences, Muhammad Ali Jinnah University, P.E.C.H.S. Main Shahrah-e-Faisal, Karachi-75400, Pakistan.


Motivated by the results of Niezgoda, corresponding to the generalization of Mercer's inequality for positive weights, in this paper, we consider real weights, for which we establish related results. To be more specific, Niezgoda's results are derived under Jensen Steffensen conditions. In addition, we construct some functionals enabling us to refine Niezgoda's results. Lastly, we discuss some applications.


Main Subjects

[1] A. Matkovic and J. Pecaric, A Variant of Jensens Inequality of Mercers Type for Operators with Applications, Linear Algebra Appl., 418 (2-3) (2006), pp. 551-564.
[2] A. Matković and J.E. Pečarić, Refinements of the Jensen-Mercer’s Inequality for Index Set Functions with Applications, Rev, Anal. Numér. Théor. Approx., 35 (1) (2006), pp. 71-82.
[3] A. McD. Mercer, A Variant of Jensen’s inequality, J. Inequal. Pure Appl. Math., 4
(4) (2003), pp. 73.
[4] A.R. Khan and I.U. Khan, Some Remarks on Niezgoda’s Extension of Jensen−Mercer Inequality, Adv. Inequal. Appl., 2016 (2016).
[5] A.R. Khan, I.U. Khan and S.S.A. Ramji, Generalizations and Refinements of Niezgoda’s Extension of Jensen-Mercer Inequality with Applications, J. Math. Inequal., 15 (4) (2021), pp. 1341-1360.
[6] A.R. Khan and S. Saadi, Generalized Jensen−Mercer Inequality for Functions with Nondecreasing Increments, Abstract Appl. Anal., 2016 (2016), pp. 1-12.
[7] A.W. Robert and D.E. Varberg, Convex functions, Academic Press, New York-
[8] D.S. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers Group, Dordrecht, (1993).
[9] F. Rubab, H. Nabi and A.R. Khan, Generalization and Refinement of Jensen Inequality, J. Math. Anal., 12 (5) (2021), pp. 1-27.
[10] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, (1934).
[11] J.E. Pečarić, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, (1992).
[12] J.F. Steffensen, On Certain Inequalities and Methods of Approximation, J. Inst. Actuaries, 3 (1919), pp. 274-279.
[13] J.L.W.V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, (French) Acta Math., 30 (1) (1906), pp. 175–-193.
[14] J.L.W.V. Jensen, Om konvexe funktioner og uligheder mellem Middelvaerdier,(German) Nyt. Tidsskrift Math., 16B (1905), pp. 49-–69.s
[15] J. Zhao, S.I. Butt, J. Nasir, Z. Wang and I. Tlili, Hermite–Jensen–Mercer Type Inequalities for Caputo Fractional Derivatives, J. Funct. Spaces, 2020 (2020), pp. 1-11.
[16] M.A. Khan, A.R. Khan and J.E. Pečarić, On the Refinements of Jensen−Mercer’s Inequality, Rev. Anal. Numér. Théor. Approx., 41 (1) (2012), pp. 62-81.
[17] M.A. Khan, M. Hanif, Z.A.H. Khan, K. Ahmad and Y.M. Chu, Association of Jensen’s Inequality for s-Convex Function with Csiszár Divergence, J. Ineq. Appl., 2019 (1) (2019), pp. 1-14.
[18] M.K. Bakula, M. Matič and J.E. Pečarić, Generalizations of the Jensen−Steffensen and Related Inequalities, Cent. Eur. J. Math., 7 (4) (2009), pp. 787-803.
[19] M. Kian and M. Moslehian, Refinements of the Operator Jensen-Mercer Inequality, Electron. J. Linear Algebra, 26 (2013), pp. 742-753.
[20] M.M. Ali and A.R. Khan, Generalized Integral Mercer’s Inequality and Integral Means, J. Inequal. Spec. Funct., 10 (1) (2019), pp. 60-67.
[21] M. Niezgoda, A Generalization of Mercer’s Result on Convex Functions, Nonlinear Anal., 71 (7-8) (2009), pp. 2771-2779.
[22] M. Niezgoda, Bifractional Inequalities and Convex Cone, Discrete Math., 306 (2) (2006), pp. 231-243.
[23] M. Niezgoda, Remarks on convex functions and separable sequences, Discrete Math., 308 (10) (2008), pp. 1765-1773.
[24] P. Xu, S.I. Butt, S. Yousaf, A. Aslam and T.J. Zia, Generalized Fractal Jensen– Mercer and Hermite–Mercer Type Inequalities via h-Convex Functions Involving Mittag–Leffler Kernel, Alexandria Engineering Journal, 61 (6) (2022), pp. 4837-4846.
[25] R. Rado, An Inequality, J. London Math. Soc., 27 (1952), pp. 1–6.
[26] S. Abramovich, M.K. Bakula, M. Matić and J.E. Pečarić, A Variant of Jensen−Steffensen’s Inequality and Quasi−Arithmetic Means, J. Math. Anal. Appl., 307 (1) (2005), pp. 370-386.
[27] S.I. Butt, M. Umar, S. Rashid, A.O. Akdemir and Y.M. Chu, New Hermite-Jensen-Mercer-type Inequalities via k-Fractional Integrals, Advances in Difference Equations, 2020 (1) (2020), pp. 1-14.
[28] T. Popoviciu, Les fonctions convexes, Hermann, Paris, 1944.