1. A. Abkar and M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim Theory Appl., 151 (2011), pp. 418-424.

2. A. Abkar and M. Gabeleh, Generalized cyclic contractions in partially ordered metric spaces, Optim Lett., 6 (2012), pp. 1819-1830.

3. R.P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, 2009.

4. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), pp. 133-181.

5. Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45 (1974), pp. 267-273.

6. A.A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), pp. 1001-1006.

7. K. Fallahi and A. Aghanians, On quasi-contractions in metric spaces with a graph, Hacettepe J. Math. Stat., 45 (4) (2016), pp. 1033-1047.

8. K. Fallahi, M. Ayobian and G. Soleimani Rad, Best proximity point results for n-cyclic and regular-n-noncyclic Fisher quasicontractions in metric spaces, 15 (2023), 7:1469.

9. K. Fallahi, G. Soleimani Rad and A. Fulga, Best proximity points for (φ − ψ)-weak contractions and some applications, Filomat., 37 (6) (2023), pp. 1835-1842.

10. J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136(4) (2008), pp. 1359-1373.

11. W.A. Kirk, P.S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclic contractive conditions, Fixed Point Theory., 4 (1) (2003), pp. 79-86.

12. J.J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order., 22 (3) (2005), p. 223-239.

13. H. Rahimi and G. Soleimani Rad, Fixed Point Theory in Various Spaces, Lambert Academic Publishing, Germany, 2013.

14. V.S. Raj, A best proximity point theorem for weakly contractive non-self mappings, Nonlinear Anal., 74 (2011), pp. 4804-4808.

15. A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., 132 (2004), pp. 1435-1443.

16. B.E. Rhoades, A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc., 266 (1977), pp. 257-290.

17. S. Sadiq Basha, Best proximity point theorems in the frameworks of fairly and proximally complete spaces J. Fixed Point Theory Appl. 19 (3) (2017), pp. 1939-1951.

18. S. Sadiq Basha, Discrete optimization in partially ordered sets, J. Glob. Optim., 54 (2012), pp. 511-517.

19. T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the property UC , Nonlinear Anal., 71 (2009), pp. 2918-2926.