Document Type : Research Paper


Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India.


In this paper, we obtain a $\varphi$-fixed point result concerning $w$-distance. There are three illustrative examples. In a separate section, we compare of the present result with that of the corresponding results prevalent in metric spaces and indicate certain new features obtained using $w$-distance. One such feature is that under certain circumstances, the fixed point can be a point of discontinuity, which is impossible in the metric case. We give an application to non-linear integral equations. The paper ends with a conclusion.


Main Subjects

1. M. Asadi, Discontinuity of control function in the $({F},\varphi,\theta)$-contraction in metric spaces, Filomat, 31 (2017), pp. 5427-5433.
2. M. Asadi, E. Karapınar and A. Kumar, $\alpha$-$\psi$-Geraghty contractions on generalized metric spaces, J. Inequal. Appl., (2014), Article ID: 423.
3. H. Aydi, T. Wongyat and W. Sintunavarat, On new evolution of Ri’s result via w-distances and the study on the solution for nonlinear integral equations and fractional differential equations, Adv. Differ. Equ., (2018), Article ID; 132.
4. S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fundamenta Mathematicae, 3 (1922), pp. 133-181.
5. B. S. Choudhury and P. Chakraborty, Fixed point problem of a multi-valued Kannan–Geraghty type contraction via w-distance, J. Anal, 31 (2023), pp. 439–458.
6. Y. Fan, C. Zhu and Z. Wu, Some $\varphi$-coupled fixed point results via modified F-control function’s concept in metric spaces and its applications, J. Comput. Appl. Math., 349 (2019), pp. 70-81.
7. M. Gabeleh, M. Asadi and E. Karapinar, Best Proximity Results on Condensing Operators via Measure of Noncompactness with Application to Integral Equations, Thai Journal of Mathematics, 18 (2020), pp. 1519-1535.
8. H. Işık, M.S. Sezen and C. Vetro, $\varphi$-Best proximity point theorems and applications to variational inequality problems, J. Fixed Point Theory Appl., 19 (2017), pp. 3177-3189.
9. M. Jleli, B. Samet and C. Vetro, Fixed point theory in partial metric spaces via $\varphi$-fixed point’s concept in metric spaces, J. Inequal. Appl., (2014), Article ID: 426.
10. O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Mathematica Japonicae, 1 (1996), pp. 381-591.
11. E. Karapinar, A. Abbas and S. Farooq, A Discussion on the Existence of Best Proximity Points That Belong to the Zero Set, Axioms, 9 (2020), Article ID: 19.
12. A. Kostić, V. Rakočević and S. Radenović, Best proximity points involving simulation functions with $w_0$-distance, RACSAM, 113 (2017), pp. 715-727.
13. P. Kumord and W. Sintunavarat, A new contractive condition approach to $\varphi$-fixed point results in metric spaces and its applications, J. Comput. Appl. Math., 311 (2017), pp. 194-204.
14. P. Kumrod and W. Sintunavarat, On new fixed point results in various distance spaces via $\varphi$-fixed point theorems in D-generalized metric spaces with numerical results, J. Fixed Point Theory Appl., 21 (2019), Article ID: 86.
15. H. Lakzian, D. Gopal and W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl., 18 (2016), pp. 251-266.
16. H. Lakzian, V. Rakočević and H. Aydi, Extensions of Kannan contraction via w-distances, Aequationes Mathematicae, 93 (2019), pp. 1231–1244.
17. H. Lakzian and B.E. Rhoades, Some fixed point theorems using weaker Meir-Keeler function in metric spaces with w-distance, Appl. Math. Comput., 342 (2019), pp. 18-25.
18. Li. Chang-Zhou, Fixed point iterative methods for solving the nonlinear matrix equation $X-A^* X^{-n}A=I$, J. Appl. Math. Comput., 69 (2023), pp. 1731-1749.
19. Z. Liu, Y. Lu and S.M. Kang, Fixed point theorems for multi-valued contractions with w-distance, Appl. Math. Comput., 224 (2013), pp. 535-552.
20. H. Monfared, M. Asadi and A. Farajzadeh, New Generalization of Darbo’s Fixed Point Theorem via α-admissible Simulation Functions with Application, Sahand Commun. Math. Anal., 17 (2020), pp. 161-171.
21. H. Monfareda, M. Asadi and M. Azhini, $F(\psi, \varphi)$-contractions for α-admissible mappings on metric spaces and related fixed point results, Commun. Nonlinear Anal., 2 (2016), pp. 86-94.
22. F. Nikbakhtsarvestani, S.M. Vaezpour and M. Asadi, $F(\psi, \varphi)$-contraction in terms of measure of noncompactness with application for nonlinear integral equations, J. Inequal. Appl., (2017), Article ID: 271.
23. G. Prasad, Fixed Point Theorems via w-Distance in Relational Metric Spaces with an Application, Filomat, 34 (2020), pp. 1889-1898.
24. V. Rakočević, Fixed Point Results in W-Distance Spaces, Taylor \& Francis, 2009.
25. A. Safari-Hafshejani, Optimal Common Fixed Point Results in Complete Metric Space with w-sistance, Sahand Commun. Math. Anal., 19 (2022), pp. 117-132.
26. H.N. Saleh, M. Imdad and E. Karapinar, A study of common fixed points that belong to zeros of a certain given function with applications, Nonlinear Anal: Modelling and Control, 26 (2021), pp. 781-800.
27. T. Senapati and L.K. Dey, Relation-theoretic metrical fixed point results via w-distance with applications, J. Fixed Point Theory Appl., 19 (2017), pp. 2945-2961.
28. S. Yan, L. Xiao-lan, D. Jia, Z. Mi and Z. Huan, Some new $\varphi$-fixed point and $\varphi$-fixed disc results via auxiliary functions, J. Inequal. Appl., (2022), Article ID:1.