1. K.T. Atanassov, Intuitionistic Fuzzy Sets. VII ITKR’s session, Sofia (deposited in Central Science and Technical Library of the Bulgarian Academy of Sciences 1697/84), 1983.

2. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst., 20 (1986), pp. 87-96.

3. Z. Balanov, Q. Hu and W. Krawcewicz, Global Hopf Bifurcation of Differential Equations with Threshold Type State-Dependent Delay, J. Differ. Equations, 257 (2014), pp. 2622-2670.

4. B. Ben Amma, S. Melliani and L.S. Chadli, Numerical Solution of Intuitionistic Fuzzy Differential Equations by Euler and Taylor Methods, Notes IFS, 22 (2016), pp. 71-86.

5. B. Ben Amma, S. Melliani and L.S. Chadli, Numerical Solution of Intuitionistic Fuzzy Differential Equations by Adams Three Order Predictor-Corrector Method, Notes IFS, 22 (2016), pp. 47-69.

6. B. Ben Amma, S. Melliani and L.S. Chadli, Numerical Solution of Intuitionistic Fuzzy Differential Equations by Runge-Kutta Method of Order Four, Notes IFS, 22 (2016), pp. 42-52.

7. B. Ben Amma, S. Melliani and L.S. Chadli, The Cauchy Problem of Intuitionistic Fuzzy Differential Equations, Notes IFS, 24 (2018), pp. 37-47.

8. B. Ben Amma, S. Melliani and L.S. Chadli, Intuitionistic Fuzzy Functional Differential Equations, Fuzzy Logic in Intelligent System Design: Theory and Applications, Adv. Intell. Syst. Comput., 2018.

9. B. Ben Amma, S. Melliani and L.S. Chadli, A Fourth Order Runge-Kutta Gill Method for the Numerical Solution of Intuitionistic Fuzzy Differential Equations, Recent advances in intuitionistic fuzzy logic systems. Theoretical aspects and applications, Stud. Fuzziness Soft Comput., 2019.

10. B. Ben Amma, S. Melliani and L.S. Chadli, The Existence and Uniqueness of Intuitionistic Fuzzy Solutions for Intuitionistic Fuzzy Partial Functional Differential Equations, Int. J. Differ. Equ., 2019 (2019), pp. 1-13.

11. B. Ben Amma, S. Melliani and L.S. Chadli, Integral Boundary Value Problem for Intuitionistic Fuzzy Partial Hyperbolic Differential Equations, Nonlinear Analysis and Boundary Value Problems, Springer Proc. Math. Stat., 2019.

12. B. Ben Amma, S. Melliani and L.S. Chadli, The Numerical Solution of Intuitionistic Fuzzy Differential Equations by the Third Order Runge-Kutta Nyström Method, Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications, 2020.

13. B. Ben Amma, S. Melliani and L.S. Chadli, On the Existence and Uniqueness Results for Intuitionistic Fuzzy Partial Differential Equations, Int. J. Dyn. Syst. Differ. Equ., 13 (2023), pp. 22-43.

14. J. Bélair, S.A. Campbell and P. Van Den Driessche, Frustration, Stability, and Delay-Induced Oscillations in a Neural Network Model, SIAM J. Appl. Math., 56 (1996), pp. 245-255.

15. A. El Allaoui, S. Melliani and L.S. Chadli, The Cauchy Problem for Complex Intuitionistic Fuzzy Differential Equations, Notes IFS, 22 (2016), pp. 55-63.

16. Ph. Getto and M. Waurick, A Differential Equation with State- Dependent Delay From Cell Population Biology, J. Differ. Equations, 260 (2015), pp. 6176-6200.

17. Q. Hu and J. Wu, Global Hopf Bifurcation for Differential Equations with State-Dependent Delay, J. Differ. Equations, 248 (2010), pp. 2801-2840.

18. M. Jeyaraman, M. Sornavalli, R. Muthuraj and S. Sowndrarajan, Common Fixed Point Theorems for Weakly Compatible Mappings in Intuitionistic Generalized Fuzzy Metric Spaces, Palest. J. Math., 9 (2020), pp. 476-484.

19. Z. Jiao, On Fixed Point Theorems in Instuitionistic Fuzzy Metric Spaces, J. Appl. Math., 2012 (2012), pp. 1-9.

20. Y.I. Kazmerchuk and J.H. Wu, Stochastic State-Dependent Delay Differential Equations with Applications in Finance, Funct. Differ. Equ., 11 (2004), pp. 77-86.

21. O. Kramosil and J. Michalek, Fuzzy Metric and Statistical Metric Spaces, Kybernelika, 11 (1975), pp. 326-334.

22. A. El Mfadel, S. Melliani and M. Elomari, On the Initial Value Problem for Fuzzy Nonlinear Fractional Differential Equations, Kragujevac J Math, 48 (2024), pp. 547-554.

23. A. El Mfadel, S. Melliani and M. Elomari, On the Existence and Uniqueness Results for Fuzzy Linear and Semilinear Fractional Evolution Equations Involving Caputo Fractional Derivative, J. Funct. Spaces, 2021 (2021), pp. 1-7.

24. A. El Mfadel, S. Melliani and M. Elomari, Notes on Local and Nonlocal Intuitionistic Fuzzy Fractional Boundary Value Problems with Caputo Fractional Derivatives, Journal of Mathematics, 2021 (2021), pp. 1-11.

25. S. Melliani and L.S. Chadli, Intuitionistic Fuzzy Differential Equation, Notes IFS, 6 (2000), pp. 37-41.

26. Y. Li and L. Zhu, Positive Periodic Solutions for a Class of Higher- Dimensional State-Dependent Delay Functional Differential Equations with Feedback Control, Appl. Math. Comput., 159 (2004), pp. 783-795.

27. S. Melliani and L.S. Chadli, Introduction to Intuitionistic Fuzzy Partial Differential Equations, Notes IFS, 7 (2001), pp. 39-42.

28. S. Melliani, M. Elomari, L.S. Chadli and R. Ettoussi, Intuitionistic Fuzzy Metric Space, Notes IFS, 21 (2015), pp. 43-53.

29. S. Melliani, M. Elomari, M. Atraoui and L. S. Chadli, Intuitionistic Fuzzy Differential Equation with Nonlocal Condition, Notes IFS, 21 (2015), pp. 58-68.

30. S. Melliani, M. Elomari and A. Elmfadel, Intuitionistic Fuzzy Fractional Boundary Value Problem, Notes IFS, 23 (2017), pp. 31-41.

31. S. Melliani, H. Atti, B. Ben Amma and L.S. Chadli, Solution of nth Order Intuitionistic Fuzzy Differential Equation by Variational Iteration Method, Notes IFS, 24 (2018), pp. 92-105.

32. S. Melliani, I. Bakhadach, M. Elomari and L.S. Chadli, Intuitionistic Fuzzy Dirichlet Problem, Notes IFS, 24 (2018), pp. 72-84.

33. R. Tiwari and S. Rajput, Fixed Point Theorem on Fuzzy Metric Spaces with Rational Inequality and its Applications, Inter. J. Resea. Eng. Sci., 8 (2020), pp. 50-56.

34. B.C. Tripathy, S. Paul and N.R. Das, Some Fixed Point Theorems in Generalized M-Fuzzy Metric Space, Bol. Soc. Parana. Mat., 41 (2023), pp. 1-7.

35. B.C. Tripathy, S. Paul and N.R. Das, Fixed Point and Periodic Point Theorems in Fuzzy Metric Space, Songklanakarin Jour. Sci. Technol., 37 (2015), pp. 89-92.

36. B.C. Tripathy, S. Paul and N.R. Das, A Fixed Point Theorem in a Generalized Fuzzy Metric Space, Bol. Soc. Parana. Mat., 32 (2014), pp. 221-227.

37. B.C. Tripathy, S. Paul and N.R. Das, Banach’s and Kannan’s Fixe Point Results in Fuzzy 2- Metric Spaces, Proyecciones J. Math., 32 (2013), pp. 363-379.

38. M. Verma and R.S. Chandel, Common Fixed Point Theorem for Four Mappings in Intuitionistic Fuzzy Metric Space Using Absorbing Maps, Int. J. Rese. Rev. Appl. Sci., 10 (2012), pp. 286-291.

39. L.A. Zadeh, Fuzzy Sets, Inf. Control, 8 (1965), pp. 338-353.

40. A.A.S. Zaghrout and S.H. Attalah, Analysis of a Model of Stage-Structured Population Dynamics Growth with Time State-Dependent Time Delay, Appl. Math. Comput., 77 (1996), pp. 185-194.